Synthesis of Hepialone and Related Dihydro- γ -pyrones by Various (3+3) Methods^[‡]

Sylvia Dreeßen, [a] Silke Schabbert, [a] and Ernst Schaumann*[a]

Dedicated to Professor Richard Neidlein on the occasion of his 70th birthday

Keywords: Oxiranes / Cyclizations / Alkynes / Pheromones / Natural products

Four routes towards the synthesis of the natural dihydropyrans 1, i.e. from chiral oxiranes 9 as C_2O building blocks and sulfur-substituted allyl (14) or propargyl (10, 11) anions as C_3 fragments, have been investigated. The resulting C_5O derivatives 4, 8 could be cyclized after generation of a carbonyl group by oxidation (6, 7) or hydrolysis (8). Here, the Pum-

merer reaction of 6 turned out to be only moderately efficient, whereas the hydroxylation of sulfone 7b allowed smooth access to dihydropyran 1b. Cyclization of bis(homoallyl) alcohol 13 was achieved by acid catalysis, but attempts to introduce a methyl group at C-2 of dihydropyran 12 did not meet with success.

Introduction

The chiral 2,6-dialkyl-substituted 2,3-dihydropyran-4-one (+)-hepialone (1a) and the analogous oxacycle 1b have been isolated from Hepialus hecta L. and Hepialus californicus Bdv. as male moth sex pheromones.[1] Because of their occurrence in nature and their simple structures, these compounds have already been the targets of several synthetic studies.^[2] Generally, the construction of the ring system has been achieved starting from chiral 5-hydroxy-substituted 1,3-diketones by formation of the cyclic hemiacetals and subsequent elimination of the hydroxy group. [2a,2c-2i] Recently, we have developed novel routes to di- or tetrahydropyrans based on (3+3) methods employing oxiranes and lithiated methoxy sulfides^[3] or carbanions of hetero-substituted alkynes as building blocks.^[4] Here, oxiranes are particularly useful building blocks as they are readily available in optically active form, opening up avenues into natural product synthesis.^[5] Moreover, it appeared feasible to modify our methods to allow the generation of a carbonyl group, thus making the title compounds available. Indeed, a retrosynthetic analysis (Scheme 1) revealed several options for generation and use of the carbonyl functionality. In routes A (Scheme 1), the final cyclization corresponds to an intramolecular Michael-type addition of a hydroxy group to an ynone $2 (R^3 = H)$; there is some precedent for 6-endo-dig ring-closure reactions[6] and also specifically for Michael additions to ynones.^[7] The carbonyl group is envisaged as being generated from 6 or 7 by sulfur methodology

The Pummerer Route (Route A_1 : $4 \rightarrow 6 \rightarrow 2 \rightarrow 1$)

It is well established that a carbonyl function can be formed from the corresponding sulfoxide by the Pummerer reaction. [9]

The required phenylthio-substituted bis(homopropargylic) alcohols 4 were readily obtained by ring-opening of oxiranes 9 with lithiated propargyl sulfides 10 in good yield as 1:1 diastereomeric mixtures (Scheme 2). Protection of the hydroxy group in 4a by acetylation to give 5 and subsequent monooxidation of the sulfide unit with m-chloroperbenzoic acid in dichloromethane yielded the functionalized sulfoxide 6 (Scheme 2). This sulfoxide was then treated with an excess of trifluoroacetic anhydride, a particularly efficient promoter of the Pummerer reaction, [10] resulting in the intermediate generation of O,S-acetal 15. This was easily hydrolyzed under basic conditions (Scheme 2).[11] At the same time, acetyl cleavage occurred, liberating the hydroxy function and allowing Michael-type addition to the ynone unit of 2a ($R^3 = H$) to give target compound 1a. Unfortunately, however, this domino process was accompanied by complex reaction pathways and purification of the product 1a was complicated by its sensitivity. Thus, product 1a was isolated only in poor yield (6%) and the Pummerer route was not investigated further.

[a] Institut für Organische Chemie, Technische Universität Clausthal,

Leibnizstraße 6, 38678 Clausthal-Zellerfeld, Germany Fax: (internat.) + 49-(0)5323/722858 E-mail: ernst.schaumann@tu-clausthal.de

involving oxidation reactions (route A₁) or by thioacetal hydrolysis in the case of **8** (route A₂). Alkynes **4** should be accessible from oxiranes **9** and functionalized alkynes **10**, **11** with complete control of regioselectivity. Alternatively, the cyclization step may precede carbonyl generation (route B) if the cyclization is controlled by an electron-donating alkyloxy group. This approach should allow introduction of the ring substituent R² as the final step.

Presented in part at the 18th International Symposium on the Organic Chemistry of Sulfur, Florence, Italy, July 1998; cf.: E. Schaumann, S. Dreeßen, S. Schabbert, R. Tiedemann, *Phosphorus Sulfur Silicon* 1999, 153/154, 339–340.

2-8,10-14: R³-R⁵ see Schemes 2-5

Scheme 1

Scheme 2

The Sulfone Hydroxylation Route (Route A_1 : $4 \rightarrow 7 \rightarrow 2 \rightarrow 1$)

Another possible means of achieving the conversion of alkynyl sulfides **4** to ynones **2** was offered by hydroxylation of the corresponding sulfones **7** using the molybdenum peroxide reagent MoO₅/pyridine/HMPA (MoOPH).^[12]

Prior to oxidation of the sulfide unit, the alcohol function in **4** was protected as a THP acetal by acid-catalyzed reaction with dihydropyran (Scheme 3). Subsequent oxidation of the crude acetals with m-chloroperbenzoic acid furnished sulfones 7 in excellent yields as mixtures of diastereomers. Oxidation of the sulfone unit was accomplished by deprotonation with LDA and addition of the MoOPH reagent, which led, after aqueous work-up, to the α,β -unsaturated alkynones **3**. Even though an excess of

MoOPH was employed, the hydroxylation did not go to completion and some unchanged sulfone **7** was recovered. The synthesis was continued by hydrolysis of the THP protecting group under mildly acidic conditions using magnesium bromide in diethyl ether.^[13] As shown for **1b**, the final regioselective cyclization to the six-membered oxacycle **1** could be realized by treatment with sodium hydride at 0 °C (Scheme 3).

The Thioacetal Route (Route A_2 : $11 \rightarrow 8 \rightarrow 2 \rightarrow 1$)

Rather than employing an oxidation step, in this synthetic sequence the carbonyl unit is present from the beginning in the masked form of a thioacetal, i.e. 11. The sulfur functionality allowed smooth deprotonation and regioselec-

Scheme 3

8, 11a:
$$2 R^4 = (CH_2)_3$$

b: $R^4 = Et$

Scheme 4

tive ring-opening of oxirane **9a** to give alkynols **8a,b** (Scheme 4). The carbonyl group was liberated by hydrolysis using Stork's hypervalent iodine reagent, which tolerates both triple bonds and hydroxy groups. Thus, in our hands, the formation of by-products was reduced in comparison to procedures using NBS^[15] or mercury(II) chloride. The final cyclization was again achieved through the use of sodium hydride (Scheme 3).

Introduction of R^2 as the Final Step (Route B_2 : $13 \rightarrow 12 \rightarrow 1$)

While the acid-induced cyclization of bis(homoallyl) alcohols normally yields tetrahydrofurans, [16] a terminal alkyloxy substituent changes the regioselectivity of the cyclization such that it leads to formation of tetrahydropyrans.[3] The requirement of introducing a masked carbonyl group from the beginning led to the C₃ building block 14 as a reaction partner for oxiranes 9a,b (Scheme 5). In fact, lithiated 14 underwent a smooth and regioselective reaction with 9a,b to give bis(homoallyl) alcohols 13a,b in good yields. It is noteworthy that the γ -directing effect of the alkyloxy group^[17] and the α -directing effect of the sulfur unit^[16,18] work together such that C-C bond formation occurs specifically at the sulfur-substituted terminus in 14. As shown for 13a, the benzyloxy group then controls the regioselectivity of the acid-catalyzed cyclization step to exclusively afford the pyran derivative 16 (Scheme 5). After liberation of the hemiacetal, diphenylphosphorochloridate^[19] turned out to be an extremely efficient reagent for the dehydration of 17 to give dihydropyran 12. It had been anticipated that strategies for introducing a methyl group at C-2 of glycals such as **12** by deprotonation with *tert*-butyllithium and subsequent alkylation^[20] might be applicable to the generation of dihydropyran **18**. However, despite testing a broad range of reaction conditions, deprotonation could not be achieved.

In summary, the synthesis via sulfone $\mathbf{6}$ (route A_1) and that involving hydrolysis of thioacetals $\mathbf{8}$ (route A_2) have turned out to be the most convenient routes to 2,6-disubstituted dihydropyrans $\mathbf{1}$. However, for 2-unsubstituted derivatives, route \mathbf{B} involving bis(homoallyl) alcohols $\mathbf{13}$ offers an attractive alternative.

Experimental Section

General: NMR: Bruker DPX 200 (200 MHz); solvent CDCl₃ unless noted otherwise; coupling constants *J* are given in Hz. – IR: Pye Unicam SP3-200; Bruker Vector 22 FT-IR. – Elemental analyses: Institut für Pharmazeutische Chemie, TU Braunschweig. – Column chromatography: Merck silica gel (70–230 mesh), petroleum ether (PE) of boiling range 60–70 °C, and ethyl acetate (EA) were

used. – Reactions for which general procedures are given were performed on a 2-5-mmol scale.

C₃ Building Blocks

2-(2-Benzyloxyethylidene)-1,3-dithiane (14): A solution of 2-trimethylsilyl-1,3-dithiane (4.23 g, 22 mmol) in dry THF (50 mL) was cooled to −78 °C and a solution of nBuLi in hexane (16.5 mL of a 1.6 M solution, 26.4 mmol) was added dropwise. The mixture was allowed to warm to 0 °C over a period of 3 h and stirred for 10 min. It was then cooled to -78 °C once more, whereupon benzyloxyacetaldehyde (4.96 g, 33 mmol) was slowly added. The reaction mixture was allowed to warm to room temperature overnight and then stirred for a further 8 h. It was subsequently poured into a mixture of water and PE (1:1) and the biphasic mixture was vigorously stirred for 10 min. After separation of the phases, the organic layer was washed with water $(5 \times)$, dried (MgSO₄), and concentrated in vacuo. The residue was subjected to kugelrohr distillation (b.p. 79 °C/0.01 mbar) to yield 5.29 g (95%) of **14**. – IR (film): $\tilde{v} = 2913$, 2853, 1565, 1421, 1353, 1105, 1087, 1071, 738, 698 cm $^{-1}$. $^{-1}$ H NMR: $\delta = 1.99-2.15$ (m, 2 H, SCH₂CH₂), 2.75-2.90 (m, 4 H, SCH_2CH_2), 4.11 (d, J = 6.5, 2 H, CH_2OBn), 4.44 (s, 2 H, OCH_2Ph), 5.98 (t, J = 6.5, 1 H, SC=CH), 7.21-7.30 (m, 5 H, arom. CH). $- {}^{13}$ C NMR (50 MHz): $\delta = 24.6$ (SCH₂CH₂), 29.6, 29.1 (SCH₂CH₂), 66.6 (CH₂OBn), 72.3 (PhCH₂O), 126.9 (SC= CH), 127.6, 127.8, 128.3 (arom. CH), 132.0 (arom. C), 138.2 (SC). - C₁₃H₁₆OS (220.3): calcd. C 61.72, H 6.53; found C 61.86, H 6.39.

Ring-Opening of Oxiranes 9 by Carbanions

Lithiation of 10, 11, and 14 and Reaction with Oxiranes 9. — General Procedure: A solution of 10a,b, 11a,b, or 14 (1.2 equiv.) in dry THF (4 mL/mmol) was cooled to -78 °C. Then, 1.1 equiv. of nBuLi (1.6 M solution in n-hexane) was slowly added and the resulting mixture was stirred for 2.5 h. At -78 °C, epoxide 9a or 9b was added and the mixture was either kept at this temperature or allowed to warm to -60 °C. The progress of the reaction was monitored by TLC and after complete consumption of the starting material the cold solution was hydrolyzed by the addition of aqueous NH₄Cl and diethyl ether (1:1). The aqueous phase was extracted three times with diethyl ether, the combined organic layers were washed twice with brine, dried (MgSO₄), and concentrated in vacuo. The resulting crude product, 4, 8, or 13, was purified by column chromatography.

5-(Phenylthio)oct-6-yn-3-ol (4a): Prepared by reaction of **10a**^[21] with ethyloxirane (**9a**). Column chromatography (PE/EA, 15:1) gave 2 diastereomers (1:1*) as a pale-yellow oil (73%). – IR (film): $\tilde{v} = 3369$, 3058, 2963, 2919, 2237, 1583, 1439, 1116, 1025, 739, 691 cm⁻¹. – ¹H NMR: $\delta = 0.93$, 0.94* (each t, J = 7.2, 3 H, C H_3 CH₂), 1.49 (br. q, J = 7.2, 4 H, CH₃CH₂, CH₃CH₂*), 1.77–1.89 (m, 5 H, CH₂, OH, CH₂*), 1.81, 1.82* (each d, J = 2.4, 3 H, CH₃-C≡), 2.15* (d, J = 4.0, 1 H, OH), 3.86 (m, 2 H, CHOH, CHOH*), 3.96, 4.08* (each tq, J = 7.2, 2.4, 1 H, CHSPh), 7.3, 7.5 (m_c, 10 H, arom. CH, CH*). – ¹³C NMR (50 MHz): $\delta = 3.6$, 3.7* (CH₃-C≡), 9.7, 9.8* (CH₃CH₂), 30.0, 30.4* (CH₃CH₂), 35.8*, 36.3 (CHSPh), 41.9, 42.3* (CH₂CS), 71.0, 71.0* (CHOH), 78.1, 78.9*, 81.0*, 81.1 (C≡C), 127.4*, 127.6, 128.7, 128.7*, 132.3*, 132.7 (arom. CH), 133.7, 134.0* (arom. C). – C₁₄H₁₈OS (234.4): calcd. C 71.75, H 7.74, S 13.68; found C 71.57, H 7.61, S 13.59.

(2*R*)-4-(Phenylthio)oct-5-yn-2-ol (4b): Prepared by reaction of 10b^[22] with (+)-(*R*)-methyloxirane (9b). Column chromatography (PE/EA, 15:1) gave 2 diastereomers (1:1) as a pale-yellow oil (71%). – IR (film): $\tilde{v} = 3365$, 3059, 2971, 2935, 2235, 1583, 1479, 1439, 1375, 1319, 1126, 1069, 1025, 742, 691 cm⁻¹. – ¹H NMR: δ =

1.08 (t, J = 7.6, 6 H, CH_3CH_2 , $CH_3CH_2^*$), 1.19, 1.22* (each d, J = 6.0, 3 H, CH_3CH), 1.85 (m, 5 H, CH_2 , OH, CH_2^*), 2.18 (br. q, J = 7.6, 4 H, $CH_2C\equiv$, $CH_2C\equiv^*$), 2.30* (m, 1 H, OH), 3.90−4.20 (m, 4 H, CHOH, CHSPh, $CHOH^*$, $CHSPh^*$), 7.2−7.5 (m, 10 H, arom. CH, CH^*). − ^{13}C NMR (50 MHz): $\delta = 12.5$, 12.5* ($CH_2C\equiv$), 13.7, 13.8* (CH_3), 23.2, 23.7* (CH_3), 36.0, 36.5* (CHSPh), 44.0, 44.3* (CH_2), 66.0, 66.3 (CHOH), 78.3, 78.8*, 87.2, 87.3* ($C\equiv C$), 127.5, 127.7, 128.7, 128.7, 132.8, 133.1 (arom. CH), 133.5, 133.8* (arom. C). − $C_{14}H_{18}OS$ (234.4): calcd. C 71.75, H 7.74, C 13.68; found C 71.77, C 7.74, C 7.75, C 13.75.

(2*R*)-1-(2-But-1-ynyl-1,3-dithian-2-yl)propan-2-ol (8a): Prepared by reaction of (+)-9b with 11a. [23] Column chromatography gave a clear oil (56%). — IR (film): $\tilde{v}=3449,\ 2972,\ 2934,\ 2906,\ 2361,\ 2233,\ 1455,\ 1422,\ 1373,\ 1275,\ 1172,\ 1128,\ 1089,\ 1064,\ 935,\ 906,\ 867,\ 779,\ 729\ cm^{-1}. — ^1H\ NMR\ (C₆D₆): δ = 0.86\ (t,\ J=7.4,\ 3\ H,\ CH₂CH₃),\ 1.16\ (d,\ 3\ H,\ J=6.3,\ CH₃),\ 1.47-1.64\ (m,\ 2\ H,\ SCH₂CH₂),\ 1.91\ (q,\ J=7.4,\ 2\ H,\ CH₂CH₃),\ 2.14\ (dd,\ J=14.2,\ 2.2,\ 1\ H,\ CH₂CHOH),\ 2.35\ (dd,\ J=14.2,\ 8.6,\ 1\ H,\ CH₂CHOH),\ 2.97\ (s,\ 1\ H,\ OH),\ 2.24-2.43,\ 3.01-3.19\ (m,\ 4\ H,\ SCH₂CH₂),\ 4.65\ (dd,\ J=8.6,\ 6.3,\ 2.2,\ 1\ H,\ CHOH). — <math>^{13}$ C NMR\ (C₆D₆): δ = 12.6\ (CH₂CH₃),\ 14.0\ (CH₂CH₃),\ 23.7\ (CH₃),\ 25.7\ (SCH₂CH₂),\ 28.4\ 28.7\ (SCH₂CH₂),\ 45.1\ (CS),\ 51.0\ (CH₂CHOH),\ 65.2\ (CHOH),\ 79.8\ (CCS),\ 90.1\ (CCH₂CH₃). — C₁₁H₁₈OS₂\ (230.4): calcd. C 57.34, H 8.01, S 27.92; found C 57.35, H 7.87, S 27.84. — [α]_D²⁵ = 0.6\ (c=1.04,\ CHCl₃).

(2*R*)-4,4-Bis(ethylthio)oct-5-yn-2-ol (8b): Prepared by reaction of (+)-9b with 11b.^[24] Column chromatography gave a clear oil (49%). – IR (film): $\tilde{v} = 3472$, 2972, 2930, 2874, 2234, 1451, 1401, 1374, 1317, 1265, 1173, 1130, 1089, 1054, 931, 782 cm⁻¹. – ¹H NMR (C₆D₆): δ = 0.82 (t, *J* = 7.5, 3 H, CH₂CH₃), 1.10 (t, *J* = 7.5, 3 H, SCH₂CH₃), 1.31 (t, *J* = 7.5, 3 H, SCH₂CH₃), 1.22 (d, *J* = 6.3, 3 H, CH₃), 1.85 (q, *J* = 7.5, 2 H, CH₂CH₃), 2.09 (dd, *J* = 14.5, 2.0, 1 H, CH₂CHOH), 2.28 (dd, *J* = 14.5, 8.5, 1 H, CH₂CHOH), 2.74 (q, *J* = 7.5, 2 H, SCH₂CH₃), 2.76 (q, *J* = 7.5, 2 H, SCH₂CH₃), 3.50 (s, 1 H, OH), 4.64 (ddq, *J* = 8.5, 6.3, 2.0, 1 H, CHOH). – ¹³C NMR (C₆D₆): δ = 12.6 (CH₂CH₃), 13.7 (CH₂CH₃), 13.8, 13.9 (SCH₂CH₃), 23.7 (CH₃), 25.5, 25.6 (SCH₂CH₃), 50.7 (CH₂CHOH), 53.7 [C(SEt)₂], 66.0 (CHOH), 79.2 [CC(SEt)₂], 90.3 (CCH₂CH₃). – C₁₂H₂₂OS₂ (246.4): calcd. C 58.49, H 9.00, S 26.02; found C 58.05, H 9.06, S 26.02. – [α]_D²⁵ = 28.1 (c = 1.11, CHCl₃).

1-[2-(2-Benzyloxyvinyl)-1,3-dithian-2-yl|butan-2-ol (13a): Prepared by reaction of 9a with 14 at -78 °C (12 h). Column chromatography (PE/EA, 8:1) gave two diastereomers (9.4:1*) as clear oils $(85\%, 9\%^*)$. – First diastereomer: IR (film): $\tilde{v} = 3446, 3032, 2930$, $1640, 1456, 1421, 1382, 1175, 1129, 740, 699 \text{ cm}^{-1}. - {}^{1}\text{H NMR}$ (C_6D_6) : $\delta = 0.98$ (t, J = 7.5, 3 H, CH_3), 1.27–1.70 (m, 4 H, SCH_2CH_2 , CH_2CH_3), 2.04 (dd, J = 14.6, 1.6, 1 H, $SCCH_2$), 2.34 $(dd, J = 14.6, 8.8, 1 H, SCCH_2), 2.34-2.54 (m, 4 H, SCH_2CH_2),$ 2.83 (d, J = 2.8, 1 H, OH), 3.95 - 4.13. (m, 1 H, CHOH), 4.48 (s, model)2 H, OC H_2 Ph), 5.21 (d, J = 12.5, 1 H, CH = CHOBn), 6.99 (d, J = 12.5) 12.5, 1 H, CH=CHOBn), 7.09-7.29 (m, 5 H, arom. CH). - ¹³C NMR (C_6D_6): $\delta = 10.1$ (CH_3), 25.1 (SCH_2CH_2), 27.2, 27.5 (SCH₂CH₂), 31.1 (CH₂CH₃), 49.7 (SCCH₂), 51.4 (CS), 70.0 (CHOH), 71.7 (OCH₂Ph), 109.8 (CH=CHOBn), 127.7, 128.0, 128.6 (arom. CH), 137.2 (arom. C), 151.4 (CH=CHOBn). -C₁₇H₂₄O₂S₂ (324.5): calcd. C 62.92, H 7.45, S 19.76; found C 62.85, H 7.55, S 19.42. – Second diastereomer: IR (film): $\tilde{v} = 3443, 2961$, 2931, 1737, 1655, 1455, 1421, 1373, 1244, 1169, 1118, 1048, 758, 702 cm⁻¹. - ¹H NMR (C₆D₆): $\delta = 0.91$ (t, J = 7.6, 3 H, CH₃), 1.31-1.56 (m, 4 H, SCH₂CH₂, CH₂CH₃), 1.97 (dd, J = 14.4, 1.6, 1 H, SCC H_2), 2.17 (dd, J = 14.4, 3.1, 1 H, SCC H_2), 2.28–2.40 (m, 4 H, SCH_2CH_2), 2.71 (d, J = 6.5, 1 H, OH), 3.96 (m, 1 H, CHOH),

4.42 (s, 2 H, OC H_2 Ph), 6.04 (d, J = 8.3, 1 H, CH =CHOBn), 7.07 (d, J = 8.3, 1 H, CH=CHOBn), 7.10–7.18 (m, 5 H, arom. CH). – ¹³C NMR (C₆D₆): δ = 10.1 (CH₃), 25.0 (SCH₂CH₂), 27.2, 27.5 (SCH₂CH₂), 31.0 (CH₂CH₃), 49.6 (SCCH₂), 51.3 (CS), 71.7 (OCH₂Ph), 79.8 (CHOH), 109.8 (CH=CHOBn), 126.5, 128.9, 130.9 (arom. CH), 138.2 (arom. C), 151.4 (CH=CHOBn). – C₁₇H₂₄O₂S₂ (324.5): calcd. C 62.92, H 7.45, S 19.76; found C 62.89, H 6.82, S 19.56.

1-[2-(2-Benzyloxyvinyl)-1,3-dithian-2-yl]propan-2-ol (13b): Prepared by reaction of 9b with 14 at -78 °C (12 h). Column chromatography (PE/EA, 5:1) gave a clear oil (78%). – IR (film): $\tilde{v} = 3449$, 2964, 2929, 2905, 1655, 1639, 1497, 1454, 1422, 1373, 1316, 1276, 1246, 1175, 1130, 935, 809, 739, 699 cm⁻¹. - ¹H NMR (C₆D₆): $\delta = 1.13$ (d, J = 6.3, 3 H, CH₃), 1.37–1.58 (m, 2 H, SCH₂CH₂), 1.93 (dd, J = 14.7, 1.9, 1 H, CH₂), 2.31 (dd, J = 14.7, 8.5, 1 H, CH_2), 2.39–2.48 (m, 4 H, SCH_2CH_2), 2.83 (s, 1 H, OH), 4.24 (ddq, $J = 8.5, 6.3, 1.9, 1 \text{ H}, \text{CHOH}), 4.42 \text{ (s, 2 H, OC}H_2\text{Ph)}, 5.14 \text{ and}$ 6.94 (each d, J = 12.6, 1 H, CH = CHOBn), 7.09-7.21 (m, 5 H, arom. CH). $- {}^{13}$ C NMR (C₆D₆): $\delta = 24.1$ (CH₃), 25.0, 27.2, 27.4 (SCH₂CH₂, SCH₂CH₂), 51.2 (CH₂CS), 51.3 (CS), 65.1 (CHOH), 71.6 (OCH₂Ph), 128.6, 128.0, 127.7 (arom. CH), 109.7 (CH= CHOBn), 137.2 (arom. C), 151.4 (CH=CHOBn). $-C_{16}H_{22}O_2S_2$ (310.5): calcd. C 61.90, H 7.15, S 20.66; found C 61.87, H 7.14, S 20.66.

Route A₁ (Pummerer Reaction)

6-Acetoxy-4-(phenylsulfinyl)oct-2-yne (6): To a solution of 4a (468 mg, 2 mmol) in pyridine (35 mL) was added acetic anhydride (9.4 mL, 100 mmol) and the mixture was stirred overnight. The pyridine was then removed by azeotropic distillation with toluene and the residual mixture was taken up in CH₂Cl₂. The resulting solution was washed with aqueous NH₄Cl solution and water. After drying (Na₂SO₄), the solvent was removed in vacuo and the crude product was purified by column chromatography (PE/EA, 10:1) to give 6-acetoxy-4-(phenylthio)oct-2-yne (5) as a colorless oil [398 mg, 72%, 2 diastereomers (1:1*)]. – IR (film): $\tilde{\nu}=3059, 2969,$ 2920, 2239, 1738, 1439, 1372, 1024, 746, 692 cm $^{-1}$. $^{-1}$ H NMR: $\delta = 0.86, 0.87*$ (each t, J = 7.4, 3 H, CH_3CH_2), 1.59, 1.60* (each quint, J = 7.4, 2 H, CH_2CH_3), 1.80*, 1.82 (each d, J = 2.0, 3 H, CH₃), 1.90 (m, 4 H, CH₂, CH₂*), 2.02, 2.04* (each s, 3 H, COCH₃), 3.76, 3.81* (each dq, J = 9.2, 2.0, 1 H, CHSPh), 5.08 (m, 2 H, CHOAc, CHOAc*), 7.3, 7.5 (m, 10 H, arom. CH, CH*). - 13C NMR (50 MHz): $\delta = 3.7, 3.7$ (CH₃), 9.2, 9.2 (CH₃CH₂), 21.2, 21.2 (COCH₃), 26.8, 27.2 (CH₂CH₃), 35.5, 36.0 (CHSPh), 39.1, 39.6 (CH_2) , 73.0, 73.3 (CHOAc), 77.5, 78.4, 80.6, 81.1 (C \equiv C), 127.5, 127.7, 128.7, 128.7, 132.5, 133.1 (arom. CH), 133.7, 133.9 (arom. C), 170.6, 170.6 (C=O). $-C_{16}H_{20}O_2S$ (276.4): calcd. C 69.53, H 7.29, S 11.60; found C 69.68, H 7.12, S 11.64. - The intermediate 5 (276 mg, 1.0 mmol) was dissolved in CH₂Cl₂ (10 mL) and a solution of m-chloroperbenzoic acid (247 mg, stabilized by the presence of 30% H_2O , 1.0 mmol) in CH_2Cl_2 (3 mL) was added at -20 °C. After 2 h at -20 °C, the resulting reaction mixture was washed with water and brine, dried (Na₂SO₄), and concentrated in vacuo. The resulting product, 6 [290 mg, 99%, mixture of four diastereomers (1:1:1:1)], was found to be sufficiently pure for direct use in the next step. – IR (film): $\tilde{v} = 3060, 2970, 2880, 2235, 1736, 1444,$ 1373, 1241, 1085, 1050, 1025, 751, 691 cm⁻¹. - ¹H NMR: δ = 0.85, 0.89, 0.90, 0.94 (each t, J = 7.2, 3 H, CH₃), 1.56-1.70 (m, 8) H, CH_2CH_3), 1.79, 1.80, 1.80, 1.81 (each s, 3 H, $CH_3C\equiv$), 2.03, 2.04, 2.05, 2.06 (each s, 3 H, COCH₃), 2.09–2.30 (m, 4 H, CH₂), 2.63 (ddd, J = 15.0, 7.0, 4.8, 1 H, CH₂), 2.84 (m, 2 H, CH₂CH₂),3.06 (ddd, J = 15.2, 9.2, 8.0, 1 H, CH₂), <math>3.38-3.66 (m, 4 H, CHSOPh), 4.90-5.12 (m, 4 H, CHOAc), 7.6-7.7 (m, 20 H, arom. H).

(±)-2-Ethyl-6-methyl-2,3-dihydropyran-4-one (1a): 6 (146 mg, 0.5 mmol) was dissolved in dry MeCN (3 mL) and 2,6-lutidine (107 mg, 1.0 mmol) was added. A solution of trifluoroacetic anhydride (210 mg, 1.0 mmol) in MeCN (4 mL) was then slowly added at -20 °C. After 1 h, the resulting mixture was treated with 1 m aqueous NaOH solution (1 mL), initially at -15 °C, but then the temperature was allowed to rise to 20 °C over a period of 3 h. TLC showed the presence of several products. The mixture was diluted with Et₂O and the organic layer was washed several times with aq. NH₄Cl solution and brine, dried (Na₂SO₄), and concentrated. Column chromatography (PE/EA, 20:1 \rightarrow 10:1) of the residue gave 8.5 mg (6%) of 1a as a colorless liquid. Spectroscopic data were as given in ref. [1c]

Route A₁ (Sulfone Hydroxylation)

Acetalization and Oxidation of 4a,b to give *O*-Protected Sulfones 7a,b: At room temperature, alkynol 4a or 4b (1 equiv.) was dissolved in CH₂Cl₂ (4 mL/mmol) and 3,4-dihydro-2*H*-pyran (5 equiv.) as well as *p*TosOH (0.01 equiv.) were added. The mixture was stirred for 1 h, then washed with H₂O, aqueous NaHCO₃ solution, and brine, and finally concentrated in vacuo. The THP derivatives thus obtained were used without further purification. — A solution of the crude sulfide (1 equiv.) in CH₂Cl₂ (10 mL/mmol) was treated with *m*-CPBA (70% in H₂O, 2.5 equiv.) at 0 °C. The stirred mixture was allowed to warm to room temperature over a period of 2 h. It was then washed as described above, dried (Na₂SO₄), and the solvent was evaporated. The residue was purified by flash chromatography (PE/EA, 10:1).

4-Phenylsulfonyl-6-(tetrahydropyran-2-vloxy)oct-2-vne (7a): Colorless viscous oil (4 diastereomers, 1:1:1:1); 90% yield based on 4a. - IR (film): $\tilde{v} = 3066, 2940, 2877, 2247, 1447, 1320, 1151, 1084,$ 734, 689 cm⁻¹. - ¹H NMR: $\delta = 0.86$, 0.88, 0.90, 0.94 (each t, J =7.6, 3 H, CH₃), 1.46–1.76 [m, 32 H, CH₂CH₃, CH₂(THP)], 1.78, 1.79, 1.79, 1.81 (each d, J = 2.2, 3 H, $CH_3C \equiv$), 1.90–2.26 (m, 8 H, CH₂), 3.46 [m, 4 H, CH₂O(THP)], 3.86 [m, 4 H, CH₂O(THP); 4 H, CHO(THP); 2 H, CHSO₂Ph], 4.22 (m, 1 H, CHSO₂Ph), 4.31 (dq, J = 11.6, 2.4, 1 H, CHSO₂Ph), 4.62 (m, 4 H, OCHO), 7.5-7.7(m, 12 H, arom. H), 7.9–9.0 (m, 8 H, arom. H). $- {}^{13}$ C NMR: $\delta =$ 3.68, 3.70, 3.72, 3.72 ($CH_3C\equiv$), 8.7, 9.1, 9.2, 9.6 (CH_3), 19.6, 19.7, 20.1, 25.2, 25.3, 25.3, 25.4, 30.8, 30.9, 31.0, 31.0 [CH₂(THP)], 26.2, 26.3, 27.2, 28.5 (CH₂CH₃), 31.9, 33.0, 33.8, 34.2 (CH₂), 55.7, 55.8, 56.9, 57.0 (CHSO₂Ph), 62.5, 62.7, 62.8, 63.2 [CH₂O(THP)], 71.2, 71.6, 71.9, 72.2 ($C \equiv C$), 73.3, 74.9, 76.3, 77.2 [CHO(THP)], 84.1, 84.5, 84.6, 85.1 (C≡C), 96.1, 97.3, 98.7, 100.1 (OCHO), 128.6, 128.7, 128.7, 129.4, 133.7, 133.9 (arom. CH), 136.8, 136.9, 137.0, 137.1 (arom. C). - C₁₉H₂₆O₄S (350.5): calcd. C 65.11, H 7.47, S 9.15; found C 64.89, H 7.31, S 8.96.

(7*R*)-5-Phenylsulfonyl-7-(tetrahydropyran-2-yloxy)oct-3-yne (7*b*): Colorless viscous oil (4 diastereomers); 82% yield based on (2*R*)-4b. – IR (film): $\tilde{v} = 3066$, 2940, 2877, 2242, 1448, 1321, 1151, 1084, 1023, 735, 690 cm⁻¹. – ¹H NMR: $\delta = 1.03$, 1.04, 1.05, 1.06 (each t, J = 7.6, 3 H, C H_3 CH₂), 1.16 (d, J = 6.4, 6 H, 2 × CH₃), 1.25, 1.29 (each d, J = 6.4, 6 H, 2 × CH₃), 1.45–1.60 [m, 20 H, CH₂(THP)], 1.60–1.80 [m, 4 H, CH₂(THP), 8 H, CH₂], 2.08–2.22 (m, 8 H, C H_2 CH₃), 3.49 [m, 4 H, CH₂O(THP)], 3.75–4.12 [m, 4 H, CH₂O(THP); 4 H, CHOTHP; 3 H, CHSO₂Ph], 4.28 (dq, J = 11.6, 2.4, 1 H, CHSO₂Ph), 4.58–4.76 (m, 4 H, OCHO), 7.5–7.7 (m, 12 H, arom. H), 7.9–8.0 (m, 8 H, arom. H). – ¹³C NMR: $\delta = 12.4$ (CH₂CH₃), 13.2, 13.2, 13.3, 13.4, 18.9, 19.1, 19.1, 19.2 (CH₃, CH₃CH₂), 19.6, 19.8, 19.8, 19.8, 25.3, 30.7, 30.9, 31.0, 31.0

[CH₂(THP)], 36.3, 36.5, 36.5, 36.5 (CH₂), 56.0, 56.3, 56.8, 56.9 (CHSO₂Ph), 62.0, 62.5, 62.7, 62.8 [CH₂O(THP)], 66.8, 69.7, 71.1, 72.9 (CHOTHP), 71.4, 71.6, 72.0, 72.2, 90.1, 90.4, 90.5, 90.8 (C=C), 94.0, 96.3, 98.4, 100.5 (OCHO), 128.6, 128.7, 129.6, 129.7, 129.8, 133.7, 133.8, 133.9 (arom. CH), 136.7, 136.8, 136.8, 136.9 (arom. C). $-C_{19}H_{26}O_4S$ (350.5): calcd. C 65.11, H 7.47, S 9.15; found C 65.50, H 7.29, S 9.35.

Hydroxylation of Sulfones 7a,b To Give Alkynones 3a,b: Sulfone 7a or 7b (1 equiv.) was dissolved in THF (30 mL/mmol) and the solution was cooled to -80 °C. Then, 3 equiv. of LDA in THF (prepared from 3.6 equiv. of HNiPr₂ and 3 equiv. of nBuLi) were slowly added and the mixture was stirred for 10 min. With the temperature maintained at -80 °C, MoO₅/pyridine/HMPT reagent^[12a] (3 equiv.) in THF (6 mL/mmol) was added dropwise. After stirring for 1 h, the intermediate formed was hydrolyzed by the addition of saturated aqueous Na₂SO₃ solution (10 mL/mmol) to the cold reaction mixture. After separation of the phases, the organic phase was washed with H₂O and brine, dried (Na₂SO₄), and concentrated in vacuo at 30 °C. The crude product was purified by chromatography to afford 3 along with some unchanged 7. The products proved to be too unstable for elemental analysis.

6-(Tetrahydropyran-2-yloxy)oct-2-yn-4-one (3a): Colorless oil (2 diastereomers, 1:1*); yield 38% (corrected for 10% of recovered **7a**). – IR (film): $\tilde{v} = 2940$, 2877, 2219, 1673, 1600, 1440, 1260, 1118, 1024 cm⁻¹. – ¹H NMR: $\delta = 0.91$, 0.95* (each t, J = 7.4, 3 H, CH₃), 1.5–1.7 [m, 16 H, CH₂(THP), CH₂CH₃, CH₂(THP)*, CH₂CH₃*], 2.02 (s, 6 H, CH₃C=, CH₃C=*), 2.62 (dd, J = 15.6, 5.4, 2 H, CH₂, CH₂*), 2.78 (dd, J = 15.6, 7.4, 1 H, CH₂), 2.96 (dd, J = 15.6, 7.0, 1 H, CH₂*), 3.48, 3.88 [each m, 2 H, CH₂O(THP)], 4.16 [m, 2 H, CHO(THP), CHO(THP)*], 4.68 (m, 2 H, OCHO, OCHO*). – ¹³C NMR: $\delta = 4.1$, 4.1* (CH₃C=), 9.3, 9.7* (CH₃), 19.7, 19.8*, 25.3, 25.4*, 30.9, 31.0* [CH₂(THP)], 26.8, 28.5* (CH₂CH₃), 49.9, 51.0* (CH₂), 62.5, 62.8* [CH₂O(THP)], 74.2, 74.9* (CHOTHP), 80.6, 80.6*, 89.3, 90.0* (C=C), 98.1, 98.8* (OCHO), 186.1, 186.3* (C=O).

(2*R*)-2-(Tetrahydropyran-2-yloxy)oct-5-yn-4-one (3b): Colorless oil (2 diastereomers, 1:1*); yield 41% (corrected for 32% of recovered 7b). – IR (film): $\tilde{v} = 2941$, 2873, 2211, 1675, 1455, 1375, 1132, 1076, 1022, 995 cm⁻¹. – ¹H NMR: $\delta = 1.19$, 1.30 (each d, J = 6.4, 3 H, CH₃), 1.20 (t, J = 7.6, 6 H, CH₃CH₂, CH₃CH₂*), 1.45–1.60 [m, 12 H, CH₂(THP), CH₂(THP)*], 2.37 (q, J = 7.6, 4 H, CH₂CH₃, CH₂CH₃*), 2.57 (dd, J = 16.0, 5.4, 1 H, CH₂), 2.60 (dd, J = 15.8, 5.8, 1 H, CH₂*), 2.83 (dd, J = 16.0, 7.6, 1 H, CH₂), 2.94 (dd, J = 15.8, 7.2, 1 H, CH₂*), 3.48, 3.88 [each m, 2 H, CH₂O(THP), CH₂O(THP)*], 4.34 [m, 2 H, CHO(THP), CHO(THP)*], 4.71 (m, 2 H, OCHO, OCHO*). – ¹³C NMR: δ = 12.6, 12.6* (CH₂CH₃), 12.7, 12.7*, 19.6, 22.0* (CH₃, CH₃CH₂), 19.4*, 19.8, 25.4, 25.4*, 30.9, 30.9* [CH₂(THP)], 52.7, 53.2* (CH₂), 62.2*, 62.8 [CH₂O(THP)], 80.5, 80.6*, 95.5*, 95.7 (C≡C), 96.0*, 99.4 (OCHO), 185.9, 185.9* (C=O).

Deprotection of Ynones 3a,b to give Alcohols 2a,b: Ynone **3a** or **3b** (1 equiv.) was dissolved in diethyl ether (20 mL/mmol) and stirred with $MgBr_2 \cdot OEt_2$ (4 equiv.) at room temperature for 1 h. Work-up was performed as described above for the synthesis of **3a,b**. In the final purification step, column chromatography using *n*-pentane/diethyl ether (1.5:1) gave pure **2b**; **2a** was obtained in sufficiently pure form from the reaction mixture.

6-Hydroxyoct-2-yn-4-one (2a): Colorless oil, quantitative yield. – IR (film): $\tilde{v} = 3413$, 2963, 2220, 1671, 1443, 1413 cm⁻¹. – ¹H NMR: $\delta = 0.93$ (t, J = 7.4, 3 H, CH₃), 1.50 (m, 3 H, CH₂CH₃,

OH), 2.01 (s, 3 H, CH₃C \equiv), 2.62 (dd, J = 17.0, 8.0, 1 H, CH₂), 2.74 (dd, J = 17, 0, 4.0, 1 H, CH₂), 4.00 (m, 1 H, CHOH).

(2*R*)-2-Hydroxyoct-5-yne-4-one (2*b*): Colorless oil, 80% yield; $[\alpha]_D^{23} = -60$ (c = 1, n-pentane). – IR (film): $\tilde{v} = 3415$, 2971, 2940, 2211, 1671, 1458, 1376, 1317, 1172, 1118, 1076 cm⁻¹. – ¹H NMR: $\delta = 1.21$ (t, J = 7.6, 3 H, CH₃CH₂), 1.21 (d, J = 6.4, 3 H, CH₃), 1.50 (br. s, 1 H, OH), 2.39 (q, J = 7.6, 2 H, CH₂CH₃), 2.67 (dd, J = 17.6, 7.2, 1 H, CH₂), 2.76 (dd, J = 17.6, 4.6, 1 H, CH₂), 4.30 (m, 1 H, CHOH). – ¹³C NMR: $\delta = 12.6$ (CH₂CH₃), 12.7, 22.2 (CH₃), 53.6 (CH₂), 63.8 (CHOH), 80.2, 96.6 (C≡C), 187.7 (C=O).

Cyclization of 2b To Give (6*R*)-6-Ethyl-2-methyl-2,3-dihydro-4*H*-pyran-4-one (1b): At 0 °C, NaH (50% in mineral oil, 1 equiv.) was added in small portions to a solution of 2b (1 equiv.) in diethyl ether (20 mL/mmol). The mixture was stirred for 1 h, then washed with water and dried (Na₂SO₄). The resulting mixture was carefully concentrated at 30 °C. The crude product was purified by column chromatography (*n*-pentane/diethyl ether, 2:1) on neutral alumina to give a colorless oil (42%); the specific optical rotation of the product was found to be identical to that reported in ref.^[2b] – IR (film): $\tilde{v} = 2965$, 2900, 1716, 1670, 1606, 1458, 1262, 1120, 1077, 867 cm⁻¹. – ¹H NMR: $\delta = 1.09$ (t, J = 7.4, 3 H, CH₃CH₂), 1.48 (d, J = 6.4, 3 H, CH₃), 2.24 (q, J = 7.4, 2 H, CH₂CH₃), 2.34 (dd, J = 16.0, 11.2, 1 H, CH₂), 2.41 (dd, J = 16.0, 6.2, 1 H, CH₂), 4.46 (ddd, J = 11.1, 6.3, 6.2, 1 H, CHO), 5.30 (s, 1 H, HC=C).

Route A2 (Thioacetal Hydrolysis)

(2R)-2-Hydroxvoct-5-vn-4-one (2b): To a solution of 8a or 8b (1 equiv.) in a mixture of MeOH and water (9:1, 1 mL/mmol), [bis(trifluoroacetoxy)iodo]benzene (1.5 equiv.) was added in small portions at room temperature and the mixture was stirred until TLC showed complete conversion of the ketone (20 min). It was then hydrolyzed with aqueous NaHCO3 solution, extracted five times with diethyl ether, and the combined extracts were dried (MgSO₄) and concentrated. Column chromatography (n-pentane/Et₂O, 1.5:1) of the residue afforded 63% (from 8a) and 78% (from 8b) of **2b** as a colorless oil; $[\alpha]_D^{27} = -59.0^{\circ}$ (c = 1.1, CHCl₃). – IR (film): $\tilde{v} = 3432, 2977, 2941, 2211, 1671, 1459, 1377, 1318, 1247, 1173,$ 1120, 1083, 1056, 1010, 945, 773 cm⁻¹. - ¹H NMR (C₆D₆): $\delta =$ 0.72 (t, 3 H, J = 7.5, CH_2CH_3), 0.96 (d, 3 H, J = 6.3, CH_3), 1.74(q, 2 H, J = 7.5, CH_2CH_3), 2.28 (dd, 1 H, J = 17.0, 3.8, CH_2CHOH), 2.47 (dd, 1 H, J = 17.0, 8.4, CH_2CHOH), 4.13 (ddq, 1 H, J = 8.4, 6.3, 3.8, CHOH). $- {}^{13}$ C NMR (C₆D₆): $\delta = 12.4$, 12.6 (CH₂CH₃), 22.6 (CH₃), 54.2 (CH₂CHOH), 63.8 (CHOH), 81.0 (CCH_2CH_3) , 94.9 (CC=O), 186.7 (C=O).

Route B (Pyran Elaboration)

8-Benzyloxy-10-ethyl-9-oxa-1,5-dithiaspiro[5.5]undecane (16): To a solution of bis(homoallylic) alcohol 13a (1 equiv.) in dichloromethane (7 mL/mmol) was added pTosOH (0.05 equiv.) and the mixture was stirred at room temperature for 1 h. After complete conversion, the mixture was diluted with diethyl ether, washed with aqueous NaHCO3 solution and twice with brine, and then dried (MgSO₄). The solvent was evaporated under reduced pressure. The residue was purified by chromatography on a silica gel column (PE/ EA, 50:1) to give two diastereomers (1:0.3*). - ¹H NMR (C₆D₆): $\delta = 0.90$ (t, 3 H, J = 7.4, CH₃), 0.93 (t, 3 H, J = 7.0, CH₃*), 1.19-1.79 (m, 12 H, 7-H*, 11-H*, CH₂CH₃, CH₂CH₃*, SCH₂CH₂, $SCH_2CH_2^*$), 2.06 (dd, 1 H, J = 13.5, 9.3, 7-H), 2.09 (dd, 1 H, J = 13.5, 9.3, 7-H) 13.5, 2.0, 11-H), 2.46 (dd, 1 H, J = 13.5, 7.4, 11-H), 1.90-2.62 (m, 8 H, SCH_2CH_2 , $SCH_2CH_2^*$), 2.71 (ddd, 1 H, J = 13.5, 2.0, 7-H), 3.80 (dddd, 1 H, J = 11.1, 7.4, 5.0, 2.0, 10-H), 4.15 (dddd, 1 H, J = 10.8, 7.8, 4.5, 1.7, 10-H*), 4.31 (d, 1 H, $J = 12.5, PhCH_2O$ *),

4.47 (d, 1 H, J = 12.0, PhC H_2 O), 4.77 (d, 1 H, J = 12.5, PhC H_2 O*), 4.79 (d, 1 H, J = 3.0, 8-H*), 4.98 (d, 1 H, J = 12.0, PhC H_2 O), 5.05 (dd, 1 H, J = 9.3, 2.0, 8-H) 7.01–7.48 (m, 10 H, arom. CH, CH*). – 13 C NMR (C₆D₆): $\delta = 10.1$ (CH₃*), 10.2 (CH₃), 25.5 (CH₂CH₃*), 25.7 (CH₂CH₃), 25.9, 28.7 (SCH₂CH₂), 25.8 (SCH₂CH₂), 26.2 (SCH₂CH₂*), 26.4, 28.5 (SCH₂CH₂*), 42.0 (C-7*), 42.7 (C-11*), 43.1 (C-7), 43.3 (C-11), 46.5 (C-6*), 48.2 (C-6), 67.3 (C-10*), 68.8 (PhCH₂O*), 70.3 (PhCH₂O), 72.1 (C-10), 96.4 (C-8*), 98.2 (C-8), 127.0, 127.2, 128.2 (arom. CH*), 127.3, 127.7, 128.2 (arom. CH), 138.8 (arom. C), 139.1 (arom. C*). – C₁₇H₂₄O₂S₂ (324.5): calcd. C 62.92, H 7.45, S 19.76; found C 62.92, H 7.41, S 19.61.

10-Ethyl-9-oxa-1,5-dithiaspiro[5.5]undecan-8-ol (17): To a solution of oxacycle 16 (1 equiv.) in dioxane (3 mL/mmol) was added 0.5 M hydrochloric acid (3 mL/mmol). The mixture was stirred at 60 °C for 12 h and then hydrolyzed by the addition of a mixture of aqueous NaHCO₃ solution and CH₂Cl₂. The aqueous phase was washed five times with CH₂Cl₂. The combined organic layers were washed three times with aqueous NaHCO3 solution, dried (MgSO₄), and concentrated in vacuo, and the residue was purified by column chromatography (PE/EA, 5:1) to give two diastereomers (1:0.3*) as a colorless solid (m.p. 89 °C) in 89% yield. - IR (film): $\tilde{v} = 3397, 2933, 1424, 1376, 1338, 1279, 1240, 1200, 1115, 1081,$ 1063, 980, 930, 908, 887, 872 cm⁻¹. - ¹H NMR (C₆D₆): $\delta = 0.88$ (t, 6 H, CH₃, CH₃*), 1.15-1.93 (m, 12 H, SCH₂CH₂, CH₂CH₃, 5-H*, 5-H), 1.95-2.78 (m, 12 H, SCH_2CH_2 , SCH_2CH_2 *, 3-H, 3-H*), 3.65-3.92 (m, 1 H, 6-H), 4.08-4.25 (m, 1 H, 6-H*), 4.40 (s, 1 H, OH), 5.13-5.42 (m, 2 H, 2-H, 2-H*). $- {}^{13}$ C NMR (C₆D₆): $\delta =$ 9.8 (CH₂CH₃*), 10.0 (CH₂CH₃), 25.2 (CH₂CH₃*), 25.7 (CH₂CH₃), 25.9 (SCH₂CH₂), 26.1 (SCH₂CH₂*), 28.7 (SCH₂CH₂), 28.9 (SCH₂CH₂*), 40.0 (C-5*), 42.9 (C-5), 43.6 (C-3*), 44.5 (C-3), 46.2 (C-4*), 48.1 (C-4), 72.4 (C-6*), 72.4 (C-6), 92.5 (C-2*), 93.3 (C-2). - C₁₀H₁₈O₂S₂ (234.4): calcd. C 51.24, H 7.74, S 27.36; found C 51.49, H 7.50, S 25.44.

10-Ethyl-9-oxa-1,5-dithiaspiro[5.5]-7-undecene (12): To a solution of 17 in dry collidine (20 mL/mmol) was added diphenyl dichlorophosphate (4 equiv.). The resulting mixture was stirred at room temperature for 48 h. The progress of the reaction was monitored by TLC (PE/EA, 5:1) and, after complete consumption of the starting material, the solution was hydrolyzed by the addition of aqueous NH₄Cl, ice, and CH₂Cl₂. The aqueous phase was extracted five times with CH₂Cl₂ and the combined organic layers were dried (MgSO₄) and concentrated in vacuo. The crude product thus obtained was purified by column chromatography on silica gel (PE/ EA, 8:1) to give **12** in 99% yield. – IR (film): $\tilde{v} = 2963$, 2932, 1631, 1423, 1244, 1042, 931, 888, 767, 750 cm $^{-1}$. $^{-1}$ H NMR (C_6D_6): $\delta = 0.90$ (t, 3 H, J = 7.5, CH₃), 1.25–1.68 (m, 4 H, SCH₂CH₂, CH_2CH_3), 1.86 (dd, 1 H, J = 13.7, 11.0, 5-H), 2.06-2.30 (m, 2 H, SCH_2CH_2), 2.46 (dd, 1 H, J = 13.7, 3.0, 5-H), 2.30–2.59 (m, 2 H, SCH_2CH_2), 4.03 (dddd, 1 H, J = 11.0, 7.5, 5.3, 1.8, 6-H), 4.83 (dd, 1 H, J = 6.0, 2.3, 3-H), 6.18 (d, 1 H, J = 6.0, 2-H). $- {}^{13}$ C NMR (C_6D_6) : $\delta = 9.6 (CH_2CH_3)$, 24.8 (CH_2CH_3) , 26.7 (SCH_2CH_2) , 27.2, 27.9 (SCH₂CH₂), 42.0 (C-5), 45.1 (C-4), 74.6 (C-6), 104.6 (C-3), 146.4 (C-2). - C₁₀H₁₆OS₂ (216.4): calcd. C 55.51, H 7.45, S 29.64; found C 55.36, H 7.44, S 29.23.

Acknowledgments

We thank the Fonds der Chemischen Industrie, Frankfurt, for financial support of this work.

- [1] [1a] W. Francke, W. Mackenroth, W. Schröder, S. Schulz, J. Tengö, E. Engels, W. Engels, R. Kittmann, D. Schneider, Z. Naturforsch. 1985, 40c, 145–147. [1b] V. Sinnwell, S. Schulz, W. Francke, R. Kittmann, D. Schneider, Tetrahedron Lett. 1985, 26, 1707–1710. [1c] I. Kubo, T. Matsumoto, D. L. Wagner, J. N. Shoolery, Tetrahedron Lett. 1985, 26, 563–566.
- [2] [2a] S. Gelin, R. Gelin, Bull. Soc. Chim. Fr. 1968, 288-298. [2b] K. Mori, H. Kisida, Tetrahedron 1986, 42, 5281-5290. [2c] J. S. Yadav, E. S. Rao, Synth. Commun. 1988, 18, 2315-2324. [2d] G. Bianchi, Gazz. Chim. Ital. 1988, 118, 699-701; Chem. Abstr. 1989, 111, 96888. [2e] P.-F. Deschenaux, T. Kallimopoulos, A. Jacot-Guillarmod, Helv. Chim. Acta 1989, 72, 1259-1261. [2f] D. P. Curran, T. A. Heffner, J. Org. Chem. 1990, 55, 4585-4595. [2g] G. G. Melikyan, A. A. Tosunyan, O. S. Badanyan, Zh. Org. Khim. 1991, 27, 2045-2051; Chem. Abstr. 1992, 116, 173813. [2h] W. J. Sanders, T. T. Wager, J. L. Seidel, Synth. Commun. 1993, 23, 87-95. [2i] S. E. Schaus, J. Brånalt, E. N. Jacobsen, J. Org. Chem. 1998, 63, 403-405. [2i] C. M. Marson, S. Harper, C. A. Oare, T. Walsgrove, J. Org. Chem. 1998, 63, 3798-3799.
- [3] [3a] R. Tiedemann, F. Narjes, E. Schaumann, Synlett 1994, 594-596. – [3b] S. Schabbert, R. Tiedemann, E. Schaumann, Liebigs Ann./Recueil 1997, 879-880.
- [4] S. Schabbert, E. Schaumann, Tetrahedron 1999, 55, 1271–1276.
- [5] [5a] H. C. Kolb, K. B. Sharpless, Tetrahedron 1992, 48, 10151-10153. [5b] A. Archelas, R. Furstoss, Top. Curr. Chem. 1999, 200, 159-191.
- ^[6] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734–736.
- [7] W.-D. Rudorf, R. Schwarz, Synlett 1993, 369-374.
- [8] S. Schabbert, E. Schaumann, Eur. J. Org. Chem. 1998, 1873–1878.
- [9] [9a] D. S. Grierson, H.-P. Husson, Comprehensive Organic Synthesis, Pergamon Press, Oxford, 1991, vol. 6, p. 924. [9b] O. de Lucchi, U. Miotti, G. Modena, Org. React. 1991, 40, 157–405.
- [10] A. K. Sharma, D. Swern, *Tetrahedron Lett.* **1974**, 1503–1506.
- [11] H. Sugihara, R. Tanikaga, A. Kaji, Synthesis 1978, 881.
- [12] [12a] E. Vedejs, D. A. Engler, J. E. Telschow, J. Org. Chem. 1978, 43, 188-196. - [12b] R. D. Little, S. O. Myong, Tetrahedron Lett. 1980, 21, 3339-3342.
- [13] S. Kim, J. H. Park, Tetrahedron Lett. 1987, 28, 439-440.
- [14] G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 287-290.
- [15] E. J. Corey, B. W. Erickson, J. Org. Chem. 1971, 36, 3553-3560.
- [16] E. Schaumann, F. Narjes, R. Tiedemann, Phosphorus Sulfur Silicon 1994, 95/96, 347-348.
- [17] D. A. Evans, G. C. Andrews, A. B. Buckwalter, J. Am. Chem. Soc. 1974, 96, 5560-5561.
- [18] E. Schaumann, A. Kirschning, F. Narjes, J. Org. Chem. 1991, 56, 717-723.
- [19] A. Kirschning, personal communication.
- [20] [20a] F. T. Oakes, J. F. Sebastian, J. Org. Chem. 1980, 45, 4959-4961. [20b] R. W. Friesen, R. W. Loo, J. Org. Chem. 1991, 56, 4821-4823. [20c] R. W. Friesen, C. F. Sturino, A. K. Daljeet, A. Kolaczewska, J. Org. Chem. 1991, 56, 1944-1947. [20d] J. Harders, A. Garming, A. Jung, V. Kaiser, H. Monenschein, M. Ries, L. Rose, K.-U. Schöning, T. Weber, A. Kirschning, Liebigs Ann./Recueil 1997, 2125-2132.
- [21] G. A. Wildschut, J. H. Van Boom, L. Brandsma, J. F. Arens, Recl. Trav. Chim. Pays-Bas 1968, 87, 1447-1452.
- [22] C. D. Hurd, H. J. Greengard, J. Am. Chem. Soc. 1930, 52, 3356-3358.
- [23] D. Guèndin-Vung, Y. Nakatani, Bull. Soc. Chim. Fr. 1986, 245-255.
- [24] W. Rzeszotarski, M. E. Guzewska, J. P. Carter, T. C. Adams, A. C. Dupont, C. Kaiser (Marion Laboratories, Inc.), U. S. Pat. 4 877 779, 1988; Chem. Abstr. 1990, 112, 178998.

Received June 13, 2000 [O00303]